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In this paper, we consider the local approximation by Baskakov-Durrmeyer
operators. The continuous functions of local Lipschitz-a (0 <a < 1) on any subset
of [0, c0) are characterized by the local rate of convergence of Baskakov—
Durrmeyer operators. The main difference between these operators and their classi-
cal and Kantorovich-variants respectively is that they have commutativity, which is
crucial for our purpose.  © 1997 Academic Press

I. INTRODUCTION AND MAIN RESULTS

The Baskakov—Durrmeyer operators on [0, co) are defined as

V0 =0=1) ¥ 0,0 [ o0 i d xe[0,00), (1)

k=0

where f'is a function for which the right side of (1.1) makes sense and

n+k—1

="

>xk(1+x)”k, Il <neN.

These operators are very interesting approximation processes and have
many nice properties such as commutativity. Their approximation rates are
closely related to the smooth property of the function they approximate
[3,4,9].

In 1991, Zhou [9] used the Baskakov—Durrmeyer operators to charac-
terize the lip a functions on [0, co) with 0 <a < 1. In fact, it was proved in
[9] that for fe C[0, 0)nL_[0, ), 0<a<]l,

10(/2
<x<1+x)+2> . l<neN, xe[0,»), (12)
n n

[Vulfo x) =f(x) | < M,
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with a constant M , independent of n and x, if and only if w,(f, #) =0(z“),
where

o (f; )= sup |4, f[(x)] .,

O<h<t
A, f(x)=f(x+h)—f(x), if x,x+he[0, o), (1.3)
4, f(x)=0, otherwise.

Such an equivalence was first given by Berens and Lorentz [1] for
Bernstein operators in 1972. Some more characterizations of second orders
and higher orders of global smoothness of functions along this line can be
found in [6, 8] and [10, 11] respectively.

All of the above mentioned results concern the global smoothness of
functions and the global approximating property. The purpose of this
paper is to give an equivalence between local smoothness of functions and
local convergence of Baskakov—Durrmeyer operators as follows.

THEOREM. Let fe C[0, 0)n L [0, 00), V,(f, x) be given by (1.1),
0<a<1, and E be any subset of [0, c0). Then we have

) =fI<Mg|x—pl%  xe[0,0), yek, (14)

if and only if

I 1\
V0=t < (M )
xe[0, o), 3<neN, (1.5)

where M, and M, are constants depending only on « and f;, d(x, E) is the
distance between x and E defined as

d(x, E) = inf {|x—yl}. (1.6)

As a consequence, we obtain the early equivalence (1.2).

We say that a continuous function f is locally Lipa(0 <a<1) on E if
it satisfies the condition (1.4). In particular, when E = {x,}, another inter-
esting corollary of our theorem can be stated as follows:

COROLLARY. Let x,e€[0, ), 0<a<1, fe C[0, o0). Then we have

Lf(0) =f(xo) | S My |x —x0[%  x€[0, o), (1.7)
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if and only if
VAo ) =) S M (n P+ ]x = x0]7),  x€[0,00), (1.8)

where

5 lf‘ X0>O’
a, if x,=0.

Thus we give another view of the fact that the Bernstein-type positive
linear operators have better approximation property at the end points. This
case also has many connections to the research of singular detection [7]
and to regularity of solutions to PDES [2] and wavelets [5].

In the following sections we shall prove our main result. First, we need
some lemma, which presents the Bernstein-type inequalities.

2. LOCAL BERNSTEIN-TYPE INEQUALITIES

To prove the theorem, we need some preliminary results. By simple com-
putations we have the moments of the Baskakov—Durrmeyer operators.

LEmMmaA 2.1. Let V,(f, x)=V,(f(t), x) be given as (1.1). Then we have
for xe[0, o0),

Vil x)=1;
nx 1
T R )
2 2 4nx n(n+1)x>
V) = =3 T2 =3) -2 —3)
Hence,
Vn((t—x)z,x)<M<x(l+x)+12> (2.1)
n n
and
|V(@?(1), x) —@*(x)| < M <x(1n+x)+nlz> (2.2)

where M is independent of n, ne N, and x, p*(t) =t(1 +t).
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In the proof of the inverse part we need some Bernstein—-Markov-type
inequalities as follows.

Lemma 2.2. Let fe C[0, o). Then we have

Vi =0=1) 3 ([ 00 de) S 00 (23)

nn—1) z v,mkx)j:(vn,k+l(r)—vn,km)f(t)dr. (24)

We denote v, (x)=0 for kK <0. Then we have

k —nx
v, (X)) =————1, (x).
n,/\( ) x(1+x) n,k( )
Note that v}, ,(x)=n(v, | x_1(x)— v, «(x)). The proof of Lemma 2.2
is quite easy and we omit it here.
With these preparations, we can present our local Bernstein-type
inequalities as follows.

LemMMA 2.3. Let O<a<l, Ec[0,00). Suppose that fe C[0, w0)
satisfies

>a/2+n“+(d(l, E))%, te[0, o0). (2.5)

Then we have

a/2
vigoln [ (N e e,

xe[0, o), (2.6)

where M' is independent of f, n, and x.
Proof. We note that for ¢, b>0, 0 <f <1,

(a+b) <a’+b?, (2.7)
and for £, xe [0, o),

d(t, E)<d(x, E)+ |t — x|, (2.8)
1+ =x(14+x)+2x(t—x)+ (t—x)>+ (t —x). (2.9)
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Using the above notes we have from the condition (2.5)

ViSDI=| T g =1 |0 ()dz‘
“ k—nx o (1 +x)\*? .
< T g mnn =1 [ o, (M)

+(d(x, E)*+2 |t —x|*+ <|[—x|>a/2+ <2X|Z—X|>“/2} W
n n
<{<X(1 +X)>x/2+n_“+(d(x, E))“}

n
o0 1/2
< Y (k—nx)? ,(x)>

N
w0 0 a2
o 2 el =1 {0, (00—
- 1—(2/2) 1 (= , 12
X{L 0, (1) dz} ey {kzo (k —nx) vmk(x)}
1

EITTR Z |k —nx| v, ((x)(n—1)
0 /2
x4 [ u,,,k(z)(z—x)Zdt}

2x
SR dz}l (B s e e

n —oX(14+x)

. W4 o 1— (a/4)
xj v, k(z)(z—xﬁdz} {j u,,,k(t)dz}
0 ’ 0

x(I+x)\"?* n § 1
<{<n> o +(d(x’E))}\/ Y+ 214y

X
fv« nx|vnk<>{(n1>j . }
1 x 2x
T w” M+<n>
o |k—nx| o ,
ngox(l_i_x) vn,k(x) {(n_l)fo vn,k(l)(t_x) dt}
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x(1+ X))\ 3 R
<{< . > +on +(d(x,E))} 1)

+§ {i |k —nx| V=2 g (x)}l .
2 x(1+ —

s} e /2
4 T =) [ 03t}

k=0 0

2 a/2 s} 1—a/4
S S et 00

1
<4 3 w1 [ o, a0 -

0, (1)
T

n

/4
X

)
5 1 0 5 1/2
23 (z (k—nx) vn,k(x)> { 0y () —1)

o}
n
x(1+
2x(1+x) k=0 kgo
1

© o/2 2 o/2
XL v,,,k(t)(t—x)zdt} +<nx> EIESY

x { 5 ousn =) [ ii—xrar}

8

x(1 4 x)\*? ey 3 n
<{<> +2n "+ (d(x, E)) } T
+M n < >ac/2
x(14+x)

+M< > [ n <x(1 +x)+12>°‘/4
n x(1+x) n n

[ n x(1+x)\"* B
<M x(l+x){< , > +n"*+(d(x, E)) }

Here we have used (2.1), Holder’s inequality several times, and the
following formula:

i (k—nx)* v, i(x) =nx(1+x).
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The proof of Lemma 2.3 is complete.

LEMMA 2.4. Under the same conditions as in Lemma 2.3, we have

x(1+x)

|V;,(f,x)|<M’n{< >a/2~|—n“+(d(x,E))°‘}, xe[0, ). (2.10)

Proof. By (2.4), (2.7), (2.8), and (2.9), we have
Vi) <n(n—1) 2 1) [ (0010 +0,4(0)
x{< (l:x)>a/2+n“+(d(x, E) 42|t —x|*
(5 ()
, p

<o {<x(1+x)>“/2+2n_m+(d(x, E))}

n

3 Y o= 1)

k=0

o a/2 e
e U R (R R S T

1—o/2 a/2 0
+Un,k(t) dl} +<2;lx> n(n_l) z Un+l,k(x)

k=0

e a/4
A o2 al

1—o/4

A e+ v e
0

<2n {<x(1+x)>“/2 +2n %+ (d(x, E))“}

n

/2

+3n { Y taia)n=1) [ (vn,k+1(z>+vﬂ,k(r))(z—x>2dr}

+<2x> {zum,x)(n—l)f O sesa(0)

n

+ vn‘k(t))(t—x)zdt}m. (2.11)
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By simple computation we have

(=10 T 00rh0) [ 0+ 0, 00— de

n n

<M<x(1+x)+12>,

where M is independent of n and x.
Combining (2.11) and (2.12), we have

(2.12)

V(£ x)| < Mn {<x(l+’“)>m/2+n“+ (d(x. E))“}, xe[0, o).

n
The proof of Lemma 2.4 is complete.

Finally, we shall use the following inequality.

LEMMA 2.5, Let 0<B<1, 0<x;<x,<00, X,—Xx; <74,
Then we have

Xy — X

Ll (@2(u)) F=172 duSM(max{(pz(xz), (pz(xl)}

Proof. Since 0 < x, <x,, then for ue[x,, x,], we have

X2 X2 u =012 4,
1 B=12 gy <
| P des |

x(2ﬁ+1)/2_x(11*/)’)/2

(1=p)2°

<
= ﬂ—l 3 (1—=p)2
<2+ 1><4(1 +x2)>

X, — X,

B (1=p)/2
<2+1>< 1+x2)> x§ A2

Xy — Xy
(265(1 4 x,)) =772

A

M

Hence (2.13) holds and the proof of Lemma 2.5 is then complete.

=1(1+1).

(2.13)
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3. PROOF OF THEOREM

With all the above preparations we can now prove our theorem. Here
the commutativity of the Baskakov—Durrmeyer operators is crucial:

ViV )=V Vi £ (3.1)
See [3].

Proof of Theorem. Sufficiency: Suppose that (1.4) holds. Then from the
continuity of / we know that (1.4) holds for any x€[0, c0) and y € E, the
closure of the set E.

We prove (1.5). Let xe[0, o) and x, e E be such that

|x —xo| =d(x, E).
By (2.1) we have

(Vs X) =S <V, (11(0) = f(x0)], X) + [ /(x) =/ (x0)]

VM|t —x0]% x) + My |x—x|”
Vn(Mf|[7x|m5 'x)+ V}I(Mf|x7x0|“a x)+Mf|x7x0 ”

2My|x = xo|* + M (V,((t —x)? x))*?

a/2
<2M, {x(l: x) +nlz> +(d(x, E))“}.

NCINN

N

Hence (1.5) holds and the proof of sufficiency is complete. We note that
this direct part holds valid also for a =1.

Necessity. Suppose that (1.5) holds. Let xe(0, o0), ye E. We show
that (1.4) is valid for a constant M ..
If |[x—y| >4, then we can easily obtain

) =fOIN<2 IS <8 ISl lx—pI™

If 0< |x—y| <%, we choose 5<neN such that

lx =yl 1 x(I+x) [y(1+y)
T<5(n,x,y):=max T TEEa 3

<lx—yl. (32)

This choice can always be realized because the sequence {d(n, x, )}, cn
decreases monotonely to zero as n tends to infinity and it satisfies.

5(7’1,an)<5(”—1,xay)<25(n,x>y); HEN'
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Under this choice, using (2.7) and (2.9), we have

LX) =)< 1) = Vau (o X))+ [Vau (S ) — ()]
F1Vaun(f=Van-1(f), x) = Vaou( f = Vau-i(f), ¥)
F1Von(Von-ifs X) = Vou(Vaur fy p)]

(
( )a/z —2 2
<M;'< - ) £ 4 (d(x, E))

1 a/2
+Mf” <y( 2—:)/)) +(272n)oc/2+(d(y, E))oc

a/2
MV <Z(21n+f)> +(2' ") 4 (d(1, E))% x)

/2
eV (G0 @ @ By

F | Vor(Van1 f3x) = Vol Van-1 £, )]

zn—]

[t — x| \*? e (2x [t =X\t —x]*
+<2n1 +(21 ) + 2n71 +(2n71)oc/2

1 a/2
+(d(x, E))*+ |1 — x|, x> MV <<y(2:1y)>

lt—y[\*? e (=Y \?
+<2n—1 +(21 ) + 2n—1

|t— |(x a o
i @ BN =y )

FVor(Voni fo2) = Var(Vaut £ 9.

<M (S Ix =y [*+ 2d(x, E))) + M Vs <<X(1 H))w

+

By (3.1) we have

Vau(Van-1 ) (Vai(Vain f59) = Vo (Va2 fL3) + Va(Va £ )

~
w

Il
’H' ™M=

Voyira(Vai f= Va2 fiy) + VoV £, ).

~
w

Il
M =
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Thus, using Lemma 2.1 and Lemma 2.2, we obtain

L) =fI <M (|x = y1* + (d(x, E)* + (Vau((1 = x)%, x)*?

X
2n—]

a/2
Hn«ryﬂwWH( >(%MtXﬂwW4

+ Y ot/Z(V ((t— 2 /4
i1 2 PN+

jy Vg(sz,z)dz’

n y
+ X | VoV f= Vs £ 0] )
j=3 1"
<M;-”<|x—y|“+ > 5>. (3.3)
j=3

Here we have used the fact that d(x, E) < |x—y|, Holder’s inequality, and
L Vivy fioydil <cllfll, Ix—yl<c|fl. |x—y|* We have also denoted

Il;=

fy Voyos (Vi fm=Viys £, 1)] dt‘. (3.4)

In order to derive (1.4), we need only estimate (3.4). Observe that

1(1+1)
/-1

/2
|%@0—%~@M<M@K )-Hﬂw“+umEW}
(3.5)

We use the local Bernstein-type inequalities and estimate (3.4) in three cases.
The first case is that (n, x, y) = 1/2" "2 Hence 2"~ 2 < 2/|x —y| by (3.2).
We note that for te[x, y] or [y, x],

d(t, E)<|t—y|<Ix—yl. (3.6)

Then we use Lemma 2.4 for 2/~ ! and obtain

fy 3M;2j71 {(1(1 +I)>x/2+(2>/’l)a+(d([’ E))oc} dt‘

1. <

Js

271

<3]‘4;/ {|x_y|oc+l 2_/‘*14_(2./‘*1)170( |x_y|

+(2j71)170(/2

f (t(1 + 1)) dt‘}

SIMJ {|x =y 27 (277D T =yl
+(277H) 72 (max{ (1 +y), x(1 +x)})** |y —x[}.
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Noting that max{y(1 +y), x(1 +x)} <27""2, then we have

(2 T x =yl

n 1
Z I]<3M;l {2;1|xy|oc+l+m
Pt : 1-2

1

+1 _20:/271(

2711 (max{ (1 + ), x(1 +x)} )" |y—x|}

7=yl (3.7)

Thus, we have estimated >%_ I, when d(n, x, y) = 1/2" 2,
On the other hand, when d(n, x, y) = max{¢(x)//2 V)2

we have max{¢(x), (y)} =222 and hence

|x—yl { p(x)  o(y) }
< max , <|x—y|. (3.8)
2 /2n72 /2n72
The second case of our estimate is 0 <o < $and d(n, x, y) = max{ p(x)/\/2" 2,
»)/x/2"7?}. In this case, the estlmates are easy. In fact, by Lemma 2.3,
Lemma 2.5, and (3.6) we have for 3<j<n,

I,=

,
| WV Vo f= Vs g0

oo, [ 27 LN .
o [T () s

fy<f<1+r)>‘““/2dz’+ 2712

X

<

X

<y {r e

+1x—=»[%)

jy (t(1+1)) "2 dz‘

X

<M {|x—y| (max{g(x), p(y)})*~" (27772
+lx —y| (max{e(x), p(y)}) " (277127
+x —p[' T (max{e(x), p(y)}) "' (27712}
Thus, taking sums over j we get from (3.8)

n 1
‘23 LMy {Ix—yl(maX{w(X), p(y)}) 2" hHt ’“)/ZW
P

1
+lx—ylmax{p(x), o(y)}) " (27727 s

1
T x— |1+ (max{p(x), 9()}) ! (2"—‘)‘/2}

1—1/,/2
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o(x)  o(y) 1\
SM/’ {|x—y| <max {2012)/2’ 2 (n—2)/2
+|x—y| <max {2(}1 2)/2° 2(n 2)/2}) 22 n o
)

u p(x) oy
+x—y|'* (max {2(;1 2720 5 2)/2}) }

<3My |x—yl% (39)

where M is constant depending only on « and f.
We have then completed the estimate of 37_; I, in the second case.
The final case is S <a < 1 and d(n, x, y) =max{ (X)/2" % o(y) /2" %}
The proof of this case is somewhat difficult.
Let3< j<n. If max{p(x),p(y)} =222 ie., 2V 22 max{¢p(x),p(y)} =1.
Then by Lemma 2.3, Lemma 2.5, we have

27T (14 1)\*? 1—j\a o
A e
<]‘4}{(2]'—1)(1—"‘)/2 |x—y| (max{(p(x), (P(y)})m_l

+ M2 )12 x — yl(max{p(x), p(y)}) !

S

M] |x—y|*2V "2 |x— p|(max{¢(x), p(y)}) "
20-2)2

max{p(x), p(y)}
21‘72)(1 —o)/2

max{p(x), p(y)})'

<Mjlx—y|'

+M/|x—y|

(3.10)

On the other hand, if max{g(x), p(y)} <2@772 ie, 2/7°<

(2V=22/max{p(x), (»)}).
Then by Lemma 2.4, we have

o2
P (GA) e e e

<

SM (27712 (max{g(x), p(p)})* [x — ]
M} |x—p|27")' "+ M] |x—p|' T (277
M7 |x—y[(2772) 02 (max{e(x), ()})* "
My [ x =yt (2772)2 (max{g(x), p(y)}) . (3.11)
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Combining (3.10) and (3.11), we have for 3<j<n

LM [x—p' (2772 (max{p(x), p(p)}) "

+ M |x—pl(2772)0 2 (max{g(x), @()})* .
By taking sums over j, we have in the final case

n

« p(x)  o(y) 1\
Y LM [x =yt <max {2(»7—2)/2’2(;1—2)/2

j=3
p(x)  e(y) 1\
+M/ [x—y] (max {2(}1—2)/2’ Hn=2)2
<2M/'»” [x—y|*™ (3.12)

Thus, combining (3.7), (3.9), and (3.12) we have for all the cases

IL<C M/ |x—yl%

3

J

where C, is a constant depending only on «. M/ is also a constant
depending only on f and a.
Using this estimate in (3.3), we obtain for any x€[0, «0), y € E,

|f(e) =fII <My |x —p|™

Thus, we complete the proof of the theorem.
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